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Abstract

The finite difference method in conjunction with the least-squares scheme and experimental temperature data is proposed to predict
the average heat transfer coefficient �h and fin efficiency gf on a vertical square fin of one-circular tube plate finned-tube heat exchangers
for various air speeds and fin spacings. The distribution of the heat transfer coefficient on the fin can be very non-uniform, thus the whole
square fin is divided into several sub-fin regions in order to predict the �h and gf values. These two predicted values can be obtained using
the present inverse scheme in conjunction with the knowledge of the temperatures recordings at several selected measurement locations.
The results show that the heat transfer coefficient on the upstream fin region can be markedly higher than that on the downstream fin
region. The �h value increases with increasing the fin spacing S and air speed Vair, and the gf value decreases with increasing the S and Vair

values. The �h and gf values respectively approach their corresponding asymptotical values obtained from a single fin as S ?1. The dis-
tributions of the fin temperature depart from the ideal isothermal situation and the fin temperature decreases more rapidly away from the
circular center with increasing the fin spacing and air speed.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The fins in heat exchangers are always applied to
increase the heat flow per unit of basic surface. The analysis
of a continuous plate fin pierced by a regularly spaced
array of circular tubes in staggered and in-line arrays has
many engineering applications. In order to simplify the
problem considered, the calculation of the standard fin
efficiency usually assumes that the heat transfer coefficient
is constant over the plate fin. However, it is well known
that there exists a very complex flow pattern within a plate
finned-tube heat exchanger due to its three-dimensional
natural and flow separations. The flow accelerates around
a heated horizontal tube and forms a low-velocity wake
region behind the tube. Thus the heat transfer coefficient
is highest on the upstream fin region and is lowest on
the wake fin region. This implies that the heat transfer
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coefficient on the fin is very non-uniform. On the other
hand, the actual steady-state heat transfer coefficient on
the fin inside a plate finned-tube heat exchanger should
be the function of position. As shown in Ref. [1], the mea-
surement of the local heat transfer coefficient on a plain
fin under steady-state heat transfer conditions was very
difficult to be performed, since the local fin temperature
and heat flux were required. Thus the estimation of a more
accurate heat transfer coefficient on the fin is an important
task for the device of the high-performance heat
exchangers.

Heat transfer coefficients encountered in forced convec-
tion are typically much higher than those encountered in
natural convection because of the higher fluid velocities
associated with forced convection. As a result, most of
researchers tend to ignore natural convection in heat trans-
fer analyses that involve forced convection, although it is
known that natural convection always accompanies forced
convection. However, this error may be considerable at low
velocities associated with forced convection [2].
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Nomenclature

Af area of the whole plate fin, m2

Aj area of the jth sub-fin region, m2

[A] global conduction matrix
do outer diameter of a circular tube, m
[F] force matrix
g acceleration of gravity, m/s2

Grd Grashof number,
gbðT o�T1Þd3

o

v2

h local heat transfer coefficient, W/m2 K
�h unknown average heat transfer coefficient on the

whole plate fin, W/m2 K
�hj unknown average heat transfer coefficient on the

jth sub-fin region, W/m2 K
k thermal conductivity of the fin, W/m2 K
kair thermal conductivity of the air, W/m K
L side length of a square fin, m
‘ distance between two neighboring nodes in the

x- and y-directions, m
m dimensionless parameter defined in Eq. (5)
�mk unknown dimensionless parameter on the kth

sub-fin region defined in Eq. (10)
N number of sub-fin regions
Nud Nusselt number defined in Eq. (36),

�hdo

kair

Nx number of nodes in the x-direction
Ny number of nodes in the y-direction
Q total heat rate dissipated from the whole plate

fin, W

qj heat rate dissipated from the jth sub-fin region,
W

Red Reynolds number, V airdo

m
ro outer radius of a circular tube, m
S fin spacing, m
S1 outer boundary surface of the circular tube
T fin temperature, K
Tj temperature of the jth sub-fin region, K
To outer surface temperature of the circular tube, K
T1 ambient temperature, K
Vair frontal air speed, m/s
X, Y spatial coordinates, m
x, y dimensionless spatial coordinates

Greek symbols

b volumetric thermal expansion coefficient, 1/K
d fin thickness, m
gf fin efficiency
v kinematic viscosity of the air, m2/s
h temperature difference shown in Eq. (6), K
[h] global temperature matrix

Superscripts

cal calculated value
mea measured data
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Quantitative studies of the heat transfer processes occur-
ring in the industrial applications require accurate knowl-
edge of the surface conditions and thermal physical
quantities of the test material. It is known that these phys-
ical quantities and surface conditions can be predicted
using the measured temperatures inside this test material.
Such problems are called the inverse heat conduction prob-
lems. These inverse problems have become an interesting
subject recently. To date, various inverse methods in con-
junction with the measured temperatures inside the test
material have been developed for the analysis of the inverse
heat conduction problems [3,4]. However, to the authors’
knowledge, a few researchers performed the prediction of
the local heat transfer coefficients on a plate fin inside the
plate finned-tube heat exchangers with regard for the effect
of the fin spacing [5–12].

Jones and Russell [5] applied the transient technique to
determine the local heat transfer coefficient on the rectan-
gular fin pierced by an elliptical steel tube and then the
finite element method was used to calculate its fin effi-
ciency. Saboya and Sparrow [6] and Rosman et al. [7] cast
solid naphthalene plates in the form of a plate-fin-and-tube
flow passage and used mass transfer technique to infer the
local heat transfer coefficient from the heat-mass transfer
analogy. The local mass transfer coefficient was defined
by measuring the thickness of naphthalene lost by sublima-
tion during a timed test run. Recently, Ay et al. [8]
performed an experimental study with the infrared thermo-
vision to monitor the temperature distribution on a plate-
fin surface inside the plate finned-tube heat exchangers
and then the local heat transfer coefficient on the test fin
can be determined using the obtained experimental temper-
ature measurements. Huang et al. [9] applied the steepest
descent method and a general purpose commercial code
CFX4.4 to estimate the local heat transfer coefficients for
the plate finned-tube heat exchangers based on the simu-
lated measured temperature distribution on the fin surface
by infrared thermography. However, the difference of the
local heat transfer coefficients on the downstream and
upstream fin regions and fin efficiency were not shown in
the works of Ay et al. [8] and Huang et al. [9]. Sometimes,
it is maybe difficult to measure the temperature distribu-
tions on the fin of plate finned-tube heat exchangers using
the infrared thermography and thermocouples for some
practical heat transfer problems. Due to this reason, Chen
et al. [10] applied the inverse scheme of the finite difference
method in conjunction with the least-squares scheme and
experimental temperature data to predict the fin efficiency
and average heat transfer coefficient on the fin inside one-
tube plate finned-tube heat exchangers for a single fin
and various air speeds. The experiment of this study [10]
was made in an induced open wind tunnel. The setup of
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this experiment was based on ASHRAE 41.2 standard. The
tube temperature was assumed to be the average of the
inlet and outlet water temperatures. The ambient tempera-
tures at the inlet and exit zones across the test section were
controlled by an air-ventilator and were measured by two
psychometric boxes. The ambient temperature was the
average of these two temperatures. Six K-type thermocou-
ples welded at the suitable positions of the sub-fin regions
were applied to measure the fin temperatures. The ambient
airflow was driven by a 3.73 kW centrifugal fan with an
inverter to provide various inlet velocities. The airflow
measuring station was an outlet chamber setup with multi-
ple nozzles based on ASHARE 41.1 standard. However, it
seems to be difficult to measure the tube temperature,
ambient temperature and air speed in the neighbor of the
test specimen using this experimental apparatus. In order
to evidence the accuracy of the predicted results, Chen
and Chou [11] applied the same scheme to predict the nat-
ural-convection heat transfer coefficient and fin efficiency
on the fin of one-tube finned-tube heat exchangers in a
small open box for various fin spacings. It can be found
that the predicted results of the average heat transfer coef-
ficient given in Ref. [11] agreed with those obtained from
the correlation recommended by current textbooks under
the assumption of the ideal isothermal fin. Thus the present
study applied the same inverse scheme [11] to predict the
average heat transfer coefficient and fin efficiency on the
fin of one-tube finned-tube heat exchangers in a small wind
tunnel for various air speeds and fin spacings. Due to the
difference of the measurement manner, comparison
between the present estimates and those given in Ref. [10]
can be difficult to be performed. Mon and Gross [12]
applied the three-dimensional numerical study to investi-
gate the effect of the fin spacing on four-row annular-finned
tube bundles in staggered and in-line arrangements.

The inverse analysis of the present study is that the
whole fin area is divided into several analysis sub-fin
regions and then the fin temperatures at these selected
Fig. 1. Experimental apparatus configuration of th
measurement locations are measured using T-type thermo-
couples. Later, the finite difference method in conjunction
with the temperature measurements and least-squares
method is applied to predict the average heat transfer coef-
ficients on these sub-fin regions. Furthermore, the average
heat transfer coefficient on the whole plate fin �h and fin effi-
ciency can be obtained for various air speeds and fin spac-
ings under the given conditions of the ambient and tube
temperatures.

The advantage of the present study is that the governing
differential equations for the airflow do not need to be
solved. In this study, the effect of the air speed and fin spac-
ing on the estimation of the �h value is investigated. The
computational procedures for the estimates of the heat
transfer coefficients on each sub-fin region are performed
repeatedly until the sum of the squares of the deviations
between the calculated and measured temperatures
becomes minimum.

2. Mathematical formulation

The experimental apparatus configuration of the small
wind tunnel used in the present study is shown in Fig. 1.
Fig. 2 shows the experimental configuration of the test
square fin vertically mounted on a circular tube. The sche-
matic diagram of one-tube plate finned-tube heat exchan-
ger is shown in Fig. 3. Fig. 4 shows the physical model of
the two-dimensional thin plate fin inside one-tube plate
fin heat exchanger, where ro, L and d denote the outer
radius of the circular tube, side length of the square plate
fin and fin thickness, respectively. The center of the circular
tube is located at (L/2, L/2). To and T1 respectively
denote the outer surface temperature of the circular tube
and the ambient temperature. Due to the thin fin behavior,
the temperature gradient in the z-direction (the fin thick-
ness) is small and the fin temperature varies only in the
X- and Y-directions. The ‘‘insulated tip” assumption can
be an adequate approximation provided that the actual
e small wind tunnel used in the present study.



Fig. 2. Experimental configuration of the test square fin vertically mounted on a circular tube.

Fig. 3. Schematic diagram of one-tube plate fin heat exchangers with the
fin spacing.

Fig. 4. Physical geometry of a two-dimensional plate fin with measure-
ment locations and sub-fin regions.
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heat rate dissipated through the tip is much smaller than
the total heat rate drawn from the base wall [13]. It can
be found from the works of Jones and Russell [5], Saboya
and Sparrow [6], Rosman et al. [7] and Ay et al. [8] that the
heat transfer coefficient on the fin of plate finned-tube heat
exchangers in forced convection is very non-uniform. Thus
the heat transfer coefficient h(X,Y) in the present study is
also assumed to be non-uniform. The heat transfer coeffi-
cient on the fin of plate finned-tube heat exchangers can
be estimated provided that the fin temperatures at various
measurement locations can be measured. Under the
assumptions of the steady state and constant thermal prop-
erties, the two-dimensional heat conduction equation for
the continuous thin fin of one-tube finned-tube heat
exchangers can be expressed as

o2T

oX 2
þ o2T

oY 2
¼ 2hðX ; Y Þ

kd
ðT � T1Þ ð1Þ

Its corresponding boundary conditions are

oT
oX
¼ 0 at X ¼ 0 and X ¼ L ð2Þ

oT
oY
¼ 0 at Y ¼ 0 and Y ¼ L ð3Þ

T ¼ T o ðX ; Y Þ on S1 ð4Þ
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where T is the fin temperature. X and Y are Cartesian
coordinates. S1 denotes the boundary of the circular tube
with radius ro. k is the thermal conductivity of the fin.

For convenience of the inverse analysis, the following
dimensionless parameters are introduced as:

x ¼ X=L; y ¼ Y =L and mðx; yÞ ¼ 2L2hðX ; Y Þ
kd

ð5Þ

Substitution of Eq. (5) into Eqs. (1)–(4) gives the following
equations:

o2h
ox2
þ o2h

oY 2
¼ mðX ; Y Þh ð6Þ

oh
ox
¼ 0 at x ¼ 0 and x ¼ 1 ð7Þ

oh
oy
¼ 0 at y ¼ 0 and y ¼ 1 ð8Þ

and

h ¼ h0 ðX ; Y Þ on S1 ð9Þ

where h = T � T1.
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Fig. 5. Nodes for the interface of two-neighboring sub-fin areas.
3. Numerical analysis

In the present study, the whole plate fin is divided into N

sub-fin regions. The heat transfer coefficient on each
sub-fin region is assumed to be constant. Thus the applica-
tion of the finite difference method to Eq. (6) can produce
the following difference equation on the kth sub-fin region
as

hiþ1;j � 2hi;j þ hi�1;j

‘2
þ hi;jþ1 � 2hi;j þ hi;j�1

‘2
¼ �mkhi;j

for k ¼ 1; 2; . . . ;N ð10Þ

where ‘ is the distance between two neighboring nodes in
the x- and y-directions and is defined as ‘ = 1/(Nx � 1) =
1/(Ny � 1), where Nx and Ny are the nodal numbers in x-
and y-directions, respectively. �mk denotes the unknown
dimensionless parameter on the kth sub-fin region and is
defined as �mk ¼ 2L2�hk=ðkdÞ, where �hk denotes the average
heat transfer coefficient on the kth sub-fin region.

The application of the central difference approximation
to the boundary conditions (7) and (8) can yield their
approximate forms as

h2;j ¼ h0;j and hNx�1;j ¼ hNxþ1;j for j ¼ 1; 2; . . . ;Ny

ð11Þ
hi;2 ¼ hi;0 and hi;Ny�1 ¼ hi;Nyþ1 for i ¼ 1; 2; . . . ;Nx

ð12Þ

Substitution of Eqs. (11) and (12) into their corresponding
difference equations can obtain the difference equations at
the boundary surfaces as
2h2;j � 2h1;j

‘2
þ h1;jþ1 � 2h1;j þ h1;j�1

‘2
¼ �mkh1;j

for k ¼ 1; 4; 6 ð13Þ
�2hNx;j þ 2hNx�1;j

‘2
þ hNx;jþ1 � 2hNx;j þ hNx;j�1

‘2
¼ �mkhNx;j

for k ¼ 3; 5; 8 ð14Þ
hiþ1;1 � 2hi;1 þ hi�1;1

‘2
þ 2hi;2 � 2hi;1

‘2
¼ �mkhi;1

for k ¼ 6; 7; 8 ð15Þ

and

hiþ1;Ny � 2hi;Ny þ hi�1;Ny

‘2
þ
�2hi;Ny þ 2hi;Ny�1

‘2
¼ �mkhi;Ny

for k ¼ 1; 2; 3 ð16Þ

It can be found from Refs. [14,15] that the boundary of
the circular tube may be approximated using an octagon in
terms of a Cartesian coordinate system. Thus a more accu-
rate modified difference equation based on this technique
can be constructed in the present study.

The difference equations for the nodes at the interface of
two neighboring sub-fin regions, as shown in Fig. 5, can be
expressed as

hiþ1;j � 2hi;j þ hi�1;j

‘2
þ hi;jþ1 � 2hi;j þ hi;j�1

‘2
¼ �mk þ �mk�

2
hi;j

ð17Þ

where �mk� denotes the unknown dimensionless parameter
on the k*th sub-fin region and is defined as �mk� ¼
2L2�hk�=ðkdÞ, where �hk� denotes the average heat transfer
coefficient on the k*th sub-fin region.
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Rearrangement of Eq. (10) and Eqs. (13)–(17) in
conjunction with the difference equations in the neighbor-
ing of the circular tube can yield the following matrix
equation:

½A�½h� ¼ ½F � ð18Þ

where [A] is a global conduction matrix. [h] is a matrix rep-
resenting the nodal temperatures. [F] is a force matrix. The
nodal temperatures can be obtained from Eq. (18) using the
Gauss elimination method.

However, it is maybe difficult to measure the tempera-
ture distributions on the whole square plate fin using the
infrared thermography and thermocouples for some prac-
tical heat transfer problems. Relatively, the unknown
heat transfer coefficient on the fin h(x,y) is not easy to
be obtained. Under this circumstance, the whole square
plate fin considered can be divided into several sub-fin
regions in the present inverse scheme and then the
unknown heat transfer coefficient on each sub-fin region
can be approximated by a constant value. Under this
assumption, the heat rate dissipated from this sub-fin
region qj is

qj ¼ 2�hj

Z
Aj

ðT � T1ÞdA for j ¼ 1; 2; . . . ;N ð19Þ

The average heat transfer coefficient on the whole plate fin
�h can be expressed as

�h ¼
XN

j¼1

�hjAj=Af ð20Þ

where N is the number of the sub-fin regions. Af is the area
of the whole square plate fin.

The efficiency of the square plate fin gf is defined as the
ratio of the actual heat transfer from the square plate fin to
the dissipated heat from the fin maintained at the tube
temperature To. Thus the fin efficiency gf can be expressed
as

gf ¼
PN

j¼1qj

2AfðT o � T1Þ�h
ð21Þ

The total heat rate dissipated from the whole square plate
fin to the ambient Q can be written as

Q ¼
XN

j¼1

qj ð22Þ

In order to estimate the unknown heat transfer coeffi-
cient on the jth sub-fin region �hj, the additional informa-
tion of the steady-state measured temperatures is required
at N interior measurement locations. The more a number
of the sub-fin regions are, the more accurate the estimation
of the unknown average heat transfer coefficient on the
whole square plate fin is. Relatively, a more computational
time can be required. In the present study, T-type thermo-
couples are used to record the temperature information at
selected measurement locations. The measured tempera-
ture taken from the jth thermocouple is denoted by T mea

j ,
j = 1, . . . ,N, as shown in Tables 1 and 2.

The least-squares minimization technique is applied to
minimize the sum of the squares of the deviations between
the calculated and measured temperatures at selected
measurement locations. The error in the estimates
Eð�m1; �m2; . . . ; �mNÞ is minimized and is defined as

Eð�m1; �m2; . . . ; �mNÞ ¼
XN

j¼1

hcal
j � hmea

j

h i2

ð23Þ

where the unknown average heat transfer coefficients on
each sub-fin region �hi, i = 1,2, . . . ,N, can be obtained from
the definition of �mi. The calculated temperature taken from
the jth thermocouple location, hcal

j , is taken from Eq. (18).
The temperature hmea

j is defined as hmea
j ¼ T mea

j � T1.
The estimated values of �mi; i ¼ 1; 2; . . . ;N ; are deter-

mined until the value of Eð�m1; �m2; . . . ; �mN ) is minimum.
The computational procedures for estimating the �mi value,
i = 1,2, . . . ,N, are described as follows.

First, the initial guesses of �mi; i ¼ 1; 2; . . . ;N ; are
arbitrarily chosen. Later, the calculated temperature hcal

j ,
can be determined. Deviation of hmea

j and hcal
j , ej, is

expressed as

ej ¼ hcal
j � hmea

j for j ¼ 1; 2; . . . ;N ð24Þ

The new calculated temperature hcal;n
j can be expanded in

a first-order Taylor series as

hcal;n
j ¼ hcal

j þ
XN

i¼1

ohcal
j

o�mi
d�mi for j ¼ 1; 2; . . . ;N ð25Þ

In order to obtain the
ohcal

j

o�mi
value, the new estimated value �m�i

is introduced and is expressed as

�m�i ¼ �mi þ didik for i; k ¼ 1; 2; . . . ;N ð26Þ
where di ¼ �m�i � �mi denotes the correction. The symbol djk

is Kronecker delta.
Accordingly, the new calculated temperature hcal;n

j with
respect to �m�i can be determined from Eq. (18). Deviation
of hcal;n

j and hmea
j , en

j , can be defined as

en
j ¼ hcal;n

j � hmea
j for j ¼ 1; 2; . . . ;N ð27Þ

The finite difference representation of the derivative
ohcal

j

o�mi
can

be expressed as

xi
j ¼

ohcal
j

o�mi
¼

hcal;n
j � hcal

j

�m�i � �mi
for j ¼ 1; 2; . . . ;N ð28Þ

Substitution of Eqs. (24), (26) and (27) into Eq. (28) can
yield

xi
j ¼

en
j � ej

di
for j ¼ 1; 2; . . . ;N ð29Þ

Substitution of Eq. (28) into Eq. (25) can obtain the new
expression of hcal;n

j as



Table 1
Temperature measurements and the present estimates for Vair = 1 m/s and various To, T1 and S values

S = 0.005 m S = 0.01 m S = 0.015 m S ?1
To = 338.6 K To = 340.1 K To = 340.1 K To = 338.2 K
T1 = 298.2 K T1 = 298.3 K T1 = 297.5 K T1 = 298.7 K

T mea
j (K) T mea

1 ¼ 301:2 T mea
1 ¼ 302:4 T mea

1 ¼ 299:9 T mea
1 ¼ 300:6

T mea
2 ¼ 307:5 T mea

2 ¼ 307:9 T mea
2 ¼ 305:7 T mea

2 ¼ 306:9
T mea

3 ¼ 307:9 T mea
3 ¼ 308:2 T mea

3 ¼ 305:3 T mea
3 ¼ 307:7

T mea
4 ¼ 301:1 T mea

4 ¼ 301:3 T mea
4 ¼ 299:6 T mea

4 ¼ 300:5
T mea

5 ¼ 313:2 T mea
5 ¼ 311:8 T mea

5 ¼ 310:1 T mea
5 ¼ 314:6

T mea
6 ¼ 298:4 T mea

6 ¼ 299:3 T mea
6 ¼ 299:1 T mea

6 ¼ 299:9
T mea

7 ¼ 302:5 T mea
7 ¼ 304:3 T mea

7 ¼ 303:1 T mea
7 ¼ 304:7

T mea
8 ¼ 306:5 T mea

8 ¼ 305:6 T mea
8 ¼ 303:7 T mea

8 ¼ 304:8

�hj (W/m2 K) �h1 ¼ 24:884 �h1 ¼ 14:025 �h1 ¼ 29:912 �h1 ¼ 39:935
�h2 ¼ 40:37 �h2 ¼ 42:56 �h2 ¼ 49:62 �h2 ¼ 45:67
�h3 ¼ 7:138 �h3 ¼ 5:25 �h3 ¼ 9:48 �h3 ¼ 9:09
�h4 ¼ 145:41 �h4 ¼ 147:38 �h4 ¼ 187:13 �h4 ¼ 216:84
�h5 ¼ 15:28 �h5 ¼ 22:51 �h5 ¼ 23:79 �h5 ¼ 8:00
�h6 ¼ 68:42 �h6 ¼ 75:21 �h6 ¼ 37:13 �h6 ¼ 58:22
�h7 ¼ 54:13 �h7 ¼ 72:28 �h7 ¼ 80:12 �h7 ¼ 66:87
�h8 ¼ 8:86 �h8 ¼ 8:64 �h8 ¼ 11:97 �h8 ¼ 18:01

qj (W) q1 = 0.25 q1 = 0.18 q1 = 0.26 q1 = 0.28
q2 = 0.97 q2 = 1.07 q2 = 1.12 q2 = 0.99
q3 = 0.19 q3 = 0.15 q3 = 0.22 q3 = 0.23
q4 = 2.15 q4 = 2.56 q4 = 2.66 q4 = 2.74
q5 = 0.52 q5 = 0.72 q5 = 0.72 q5 = 0.27
q6 = 0.41 q6 = 0.40 q6 = 0.25 q6 = 1.05
q7 = 1.09 q7 = 1.32 q7 = 1.43 q7 = 0.92
q8 = 0.21 q8 = 0.18 q8 = 0.22 q8 = 0.35

�h (W/m2 K) 43.02 45.44 49.40 54.08

Q (W) 5.80 6.27 6.87 6.84

gf 0.18 0.18 0.18 0.17
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hcal;n
j ¼ hcal

j þ
XN

i¼1

xi
jd
�
i for j ¼ 1; 2; . . . ;N ð30Þ

where d�i ¼ d�mi denotes the new correction of the �mi value.
Substituting Eqs. (24) and (27) into Eq. (30) gives

en
j ¼ ej þ

XN

i¼1

xi
jd
�
i for j ¼ 1; 2; . . . ;N ð31Þ

As shown in Eq. (23), the error in the estimates Eð�m1+D�m1,
�m2+D�m2; . . . ; �mN þ D�mN ) can be expressed as

E ¼
XN

j¼1

ðen
j Þ

2 ð32Þ

In order to yield the minimum value of E with respect to
the �mi values,, i = 1,2, . . . ,N, differentiating E with respect
to the new correction d�i will be performed. Thus the cor-
rection equations for the �mi values can be expressed as

XN

j¼1

XN

k¼1

xi
kx

j
kd�j ¼ �

XN

j¼1

xi
jej; i ¼ 1; 2; . . . ;N ð33Þ

Eq. (33) is a set of N algebraic equations for the new cor-
rections d�i . The new correction d�i can be obtained by solv-
ing Eq. (33). Furthermore, the new estimated heat transfer
coefficients can also be determined. The above procedures
are repeated until the values of j h
mea
j �hcal

j

hmea
j
j, j = 1,2, . . . ,N,

are all less than 10�4.
4. Experimental apparatus

The schematic diagram of the experimental apparatus
used in the present study for the estimation of the
forced-convection heat transfer coefficient on a square
plate fin of one-tube plate finned-tube heat exchangers is
shown in Fig. 1. This experiment is conducted in a small
wind tunnel, as shown in Fig. 1. This wind tunnel with
226 cm in length, 22 cm in width and 22 cm in height is
made of acrylic-plastic sheets. The ambient airflow was dri-
ven by a 115V-AC rotary fan with a 200 W dimmer switch
to provide various inlet air speeds. During an experiment,
the airflow is straightened by the flow straightener installed
in the air inlet of the small wind tunnel. This flow straight-
ener is constructed by many pipettes with 6 mm in diame-
ter and 220 mm in length. An anemometer installed at
300 mm in front of the airflow entering the test specimen
is used to measure the frontal air velocity. The horizontal
circular tube with an outer diameter of 27.3 mm and 2 mm
in thickness and the test square fin with 100 mm in length,
100 mm in width and 1 mm in thickness are made of AISI
304 stainless material. It can be found from Ref. [15] that



Table 2
Temperature measurements and the present estimates for Vair = 3 m/s and various To, T1 and S values

S = 0.005 m S = 0.01 m S = 0.015 m S ?1
To = 337.0 K To = 335.0 K To = 335.3 K To = 336.5 K
T1 = 298.0 K T1 = 297.7 K T1 = 297.4 K T1 = 297.7 K

T mea
j (K) T mea

1 ¼ 299:9 T mea
1 ¼ 299:4 T mea

1 ¼ 299:2 T mea
1 ¼ 299:1

T mea
2 ¼ 303:4 T mea

2 ¼ 303:5 T mea
2 ¼ 304:3 T mea

2 ¼ 303:0
T mea

3 ¼ 303:2 T mea
3 ¼ 302:8 T mea

3 ¼ 303:2 T mea
3 ¼ 304:0

T mea
4 ¼ 299:5 T mea

4 ¼ 298:7 T mea
4 ¼ 298:8 T mea

4 ¼ 298:6
T mea

5 ¼ 307:7 T mea
5 ¼ 306:6 T mea

5 ¼ 307:4 T mea
5 ¼ 311:1

T mea
6 ¼ 298:6 T mea

6 ¼ 298:4 T mea
6 ¼ 297:6 T mea

6 ¼ 298:5
T mea

7 ¼ 300:8 T mea
7 ¼ 301:5 T mea

7 ¼ 301:1 T mea
7 ¼ 301:4

T mea
8 ¼ 302:9 T mea

8 ¼ 302:3 T mea
8 ¼ 301:9 T mea

8 ¼ 301:1

�hj (W/m2 K) �h1 ¼ 25:542 �h1 ¼ 27:955 �h1 ¼ 44:563 �h1 ¼ 33:849
�h2 ¼ 75:97 �h2 ¼ 65:10 �h2 ¼ 55:20 �h2 ¼ 76:36
�h3 ¼ 12:63 �h3 ¼ 12:67 �h3 ¼ 13:78 �h3 ¼ 13:06
�h4 ¼ 231:07 �h4 ¼ 303:43 �h4 ¼ 323:04 �h4 ¼ 332:72
�h5 ¼ 31:83 �h5 ¼ 35:51 �h5 ¼ 30:11 �h5 ¼ 9:03
�h6 ¼ 63:45 �h6 ¼ 74:09 �h6 ¼ 58:51 �h6 ¼ 90:01
�h7 ¼ 145:07 �h7 ¼ 103:11 �h7 ¼ 122:79 �h7 ¼ 105:92
�h8 ¼ 8:58 �h8 ¼ 11:56 �h8 ¼ 15:24 �h8 ¼ 32:19

qj (W) q1 = 0.17 q1 = 0.14 q1 = 0.23 q1 = 0.18
q2 = 1.26 q2 = 1.08 q2 = 0.97 q2 = 1.25
q3 = 0.20 q3 = 0.19 q3 = 0.22 q3 = 0.24
q4 = 2.69 q4 = 3.09 q4 = 3.21 q4 = 3.34
q5 = 0.78 q5 = 0.82 q5 = 0.72 q5 = 0.26
q6 = 0.23 q6 = 0.25 q6 = 0.20 q6 = 0.28
q7 = 1.72 q7 = 1.36 q7 = 1.49 q7 = 1.37
q8 = 0.12 q8 = 0.16 q8 = 0.19 q8 = 0.39

�h (W/m2 K) 68.32 72.57 76.00 80.49

Q (W) 7.16 7.07 7.22 7.30

gf 0.15 0.14 0.14 0.13

52 H.-T. Chen et al. / International Journal of Heat and Mass Transfer 50 (2007) 45–57
the thermal conductivity of AISI 304 stainless material is
14.9 W/m K. The horizontal circular tube is placed on
two wood supporters, which is 98 mm above an experi-
mental table to prevent ground effects. The test fins are
vertically mounted on this circular tube, as shown in Figs.
1 and 2. The ambient and test fin temperatures are mea-
sured using T-type thermocouples. A cylindrical rod with
an outer diameter of 20 mm and 100 mm in length bound
by a single thermofoil heater with an outer diameter of
1.5 mm is inserted in the circular tube and then the tube
will be heated. Thus the radial gap between the surround-
ing circular tube and the whole electrical heating rod is
small. On the other hand, the whole electrical heating
rod is nearly fitted to the surrounding circular tube. Two
hundred Watt power input was supplied the heater. The
electrical heating rod was heated about 2 h. However, the
steady-state condition has reached about 2000 s. The read-
ings of all the thermocouples used to measure the ambient
temperature, tube temperature and fin temperature are
recorded from t = 0 until the steady-state condition has
reached. All the data signals were collected and converted
by a data acquisition system (National Instruments NI
SCXI-1000, 1102 and 1300). The data acquisition system
then transmitted the converted signals through a DAQ
interface to a personal computer in conjunction with the
Labview software for further operation. The limit of error
of the thermocouple is ±0.4%. The histories of the mea-
sured temperatures for all the thermocouples are obtained
using a curve-fitted scheme. The experiment will be repeat-
edly made provided that one of the temperature measure-
ments for all the thermocouples is not very accurate. In
order to check the accuracy of the measured temperatures,
the experiments are at least repeated 2 times. In order to
minimize the effect of the thermal contact resistance
between the fin and circular tube on the estimates, the
gap between the fin and the circular tube is filled with
the cyanoacrylate adhesive (Satlon, D-3). In addition, four
thermocouples placed in the interface between the fin and
circular tube are fixed at four different positions of the
fin base, TC9, TC10, TC11 and TC12 shown in Fig. 4,
by using a cyanoacrylate adhesive (Satlon, D-3). The fin
base temperature is measured from these four thermocou-
ples. The average of these four temperature measurements
is taken as the fin base temperature and is also assumed to
be the outer surface temperature of the circular tube To in
the present study. Three thermocouples penetrated the cen-
tral line of the top surface and two lateral surfaces are
positioned at 100 mm away from the test specimen in order
to measure the ambient temperature T1. The average of
these three temperature measurements is taken as the
ambient temperature T1. For the present problem, the
flow and thermal fields in the previous works were often
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assumed to be symmetric. In order to investigate the reli-
ability of the above assumption, the regular arrangements
of the thermocouples welded on the square fin are chosen.
Thus the whole square fin is divided into eight sub-fin
regions, i.e., N = 8. Regions 1, 2 and 3 are the fin regions
above the tube. Regions 6, 7 and 8 are the fin regions
below the tube. In order to estimate the average heat trans-
fer coefficient on each sub-fin region, eight T-type thermo-
couples are welded at the suitable positions of these sub-fin
regions, as shown in Fig. 4. Eight T-type thermocouples
for the measurements of the fin temperature are respec-
tively welded at (2/11, 9/11), (1/2, 9/11), (9/11, 9/11),
(2/11, 1/2), (9/11, 1/2), (2/11, 2/11), (1/2, 2/11) and
(9/11, 2/11). The values of T mea

1 (2/11, 9/11), T mea
2 (1/2,

9/11), T mea
3 (9/11, 9/11), T mea

4 (2/11, 1/2), T mea
5 (9/11, 1/2),

T mea
6 (2/11, 2/11), T mea

7 (1/2, 2/11) and T mea
8 (9/11, 2/11),

respectively denote T mea
1 , T mea

2 , T mea
3 , T mea

4 , T mea
5 , T mea

6 ,
T mea

7 and T mea
8 . It can be observed that the first, second,

third, sixth, seventh and eighth thermocouples are symmet-
ric with respect to y = 1/2. The diameter of the spot sizes
of eight thermocouples is about 0.13 mm.
5. Results and discussion

It can be observed from Ref. [13] that the ‘‘insulated tip”

assumption is a good approximation when the actual heat
rate passed through the tip is negligible relative to the total
heat rate drawn from the base wall. For simplicity, the
average heat transfer coefficient on the tip surface can be
assumed to be the same as that on the lateral surfaces of
the fin. On the other hand, the ‘‘insulated tip” assumption
will be reasonable provided that the surface area of the fin
tip is very smaller than the total fin surface area. Their ratio
for the present study can be written as 2dL

ðL2�pr2
oÞþ2dL

. Based on
the experiment data given in the present study, the surface
area of the fin tip is only 2.08% of the total fin surface area.
This implies that the heat rate passed through the fin tip
can be neglected in the present study. Thus Eqs. (2) and
(3) in the present study should be the reasonable assump-
tions. In this study, the Reynolds number Red is defined
as Red = Vairdo/m, where Vair, do and m denote the frontal
air speed, outer diameter of the circular tube and kinematic
viscosity of the air. It is well known that the parameter
Grd=Re2

d represents the importance of natural convection
and forced convection for a given fluid, where Grd denotes

the Grashof number and is defined as Grd ¼
gbðT o�T1Þd3

0

m2 . The
property b in the Grashof number denotes the expansion
coefficient of the air.

The temperature measurements T mea
1 , T mea

2 , T mea
3 , T mea

4 ,
T mea

5 , T mea
6 , T mea

7 and T mea
8 at Vair = 1 m/s and 3 m/s are

respectively shown in Tables 1 and 2 for various To, T1
and S values. The nodal numbers Nx and Ny used in the
computation are Nx = Ny = 23. Tables 1 and 2 also show
the effect of the fin spacing S on the average heat transfer
coefficient on the jth sub-fin region �hj, heat rate on the jth
sub-fin region qj, total heat rate on the whole square fin Q,
average heat transfer coefficient on the whole square fin �h
and fin efficiency gf. An interesting finding that is
T mea

1 6¼ T mea
6 , T mea

2 6¼ T mea
7 and T mea

3 6¼ T mea
8 can be observed

from Tables 1 and 2. This phenomenon can result from
the following reasons that the flow pattern behind the tube
may become turbulent and random in motion for the pres-
ent problem and the test specimen can not be easy to be hor-
izontally positioned. Thus the symmetric assumptions of the
flow and thermal fields are not always very reasonable for
the present real problem. Due to the heated air arising above
the horizontal circular, it can be found from Tables 1 and 2
that the measured temperatures on the fin regions above the
tube, T mea

1 , T mea
2 and T mea

3 , respectively are higher than those
on the fin regions above the tube, T mea

6 , T mea
7 and T mea

8 .
Due to the blockade of the tube, the airflow coming into

the region between two parallel fins accelerates around a
hot horizontal tube and forms a low-velocity wake region
behind the tube. Thus it can be found from Tables 1 and
2 that the fin temperatures on the downstream fin region
are markedly higher than those on the upstream fin region
for various To, T1 and S values. The same phenomenon
can also be found from Ref. [10]. This result causes that
the maximum heat transfer coefficient and heat flux occur
on the front fin region. On the other hand, Region 4 makes
a big contribution to the whole heat transfer coefficient. In
general, the average heat transfer coefficients on the down-
stream sub-fin regions behind the tube are lower than those
on the other sub-fin regions, as shown in Tables 1 and 2.
On the other hand, these regions belong to the low-perfor-
mance wake region. Moreover, the average heat transfer
coefficients on Regions 2 and 7 are larger than those on
the downstream sub-fin regions due to the formation of
recirculating flow. Therefore, in order to enhance the over-
all heat transfer, it is worth to find a way to increase heat
transfer in these regions. This may lead to design a heat
exchanger with a high heat transfer performance. The ratio
of the average heat transfer coefficient on the front fin
region �h4 to that on the wake fin region �h5 for
S = 0.005 m is up to 10 times at Vair = 1 m/s and is about
7 times at Vair = 3 m/s. It can be observed from Ref. [7]
that the heat transfer coefficient is low on the back fin
region of the tube and is much higher on the entrance fin
region than on the wake fin region. It is obvious that the
present results agree with those given by Rosman et al.
[7]. The ratio of the heat flux on the front fin region q4 to
that on the wake fin region q5 for S = 0.005 m is about 4
times at Vair = 1 m/s and is about 3.5 times at Vair =
3 m/s. The results in Tables 1 and 2 show that the wake
fin region of a one-tube finned-tube heat exchanger in the
range of Vair = 1–3 m/s is responsible for 10% of the total
heat rate on the whole plate fin when 0.005 m 5 S 5

0.015 m. It is worth noting that the average heat transfer
coefficient on the jth sub-fin region �hj; j ¼ 1; 2; . . . ; 8; are
a little sensitive to the measured fin temperatures at various
measurement locations. However, the average heat transfer
coefficient �h seems to be not very sensitive to the measured
fin temperatures at various measurement locations.
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It can be observed from Tables 1 and 2 that the average
heat transfer coefficient �h increases with increasing the fin
spacing S and air speed Vair, and the fin efficiency gf

decreases with increasing the S and Vair. However, the
effect of S on �h and gf were not discussed in the works of
Rosman et al. [7] and Ay et al. [8]. The �h value in the range
of Vair = 1–3 m/s increases from 43.02 W/m2 K to
68.32 W/m2 K for S = 0.005 m and from 49.40 W/m2 K
to 76.00 W/m2 K for S = 0.015 m. The gf value decreases
from 18% to 15% for S = 0.005 m and from 18% to 14%
for S = 0.015 m. Figs. 6 and 7 respectively show the varia-
Fig. 6. Variation of �h with S for various Vair values.

Fig. 7. Variation of gf with S for various Vair values.
tions of the �h and gf values with the fin spacing for various
Vair values. It can be found from Figs. 6 and 7 that the �h
and gf values respectively approach their corresponding
asymptotical values obtained from a single square fin as
S ?1. The effect of the fin spacing S on the �h and gf val-
ues shown in Figs. 6 and 7 can be negligible when the S
value exceeds about 0.03 m. The similar phenomenon can
also be observed from Ref. [11]. This implies that the pres-
ent estimated results are reasonable and are obtained over
a reasonably wide range of fin spacings.

Once the average heat transfer coefficient on each sub-
fin region is obtained, the temperature distribution on the
whole square fin can also be determined from Eq. (18).
However, it should be noted that the average heat transfer
coefficient on each sub-fin region is the approximate value.
Thus the temperature distribution on the whole square fin
is also an approximate contour for various Vair and S val-
ues. Figs. 8 and 9 show the distributions of the calculated
temperature on the whole square fin for S = 0.005 m and
various air speeds. The distributions of the calculated tem-
perature on the fin for S = 0.015 m and various air speeds
are shown in Figs. 10 and 11. It can be observed from Figs.
8–11 that, due to the poor thermal conductivity of the
stainless fin, there is a considerable temperature drop
between the tube wall and the edge of the square fin espe-
cially on the downstream region. The fin temperature dis-
tributions obviously depart from the ideal isothermal
situation and the fin temperature decreases more rapidly
away from the circular center when the Vair value increases.
Due to the above phenomenon, the fin efficiency decreases
with increasing the frontal air speed or the Reynolds
number.
Fig. 8. Distribution of the calculated fin temperature for S = 0.005 m and
Vair = 1 m/s.



Fig. 10. Distribution of the calculated fin temperature for S = 0.015 m
and Vair = 1 m/s.

Fig. 9. Distribution of the calculated fin temperature for S = 0.005 m and
Vair = 3 m/s.

Fig. 11. Distribution of the calculated fin temperature for S = 0.015 m
and Vair = 3 m/s.

Fig. 12. Variation of Nud=Re1=2
d with Grd=Re2

d .
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Figs. 12 and 13 respectively show the effect of Grd=Re2
d

on Nud=Re1=2
d and the fin efficiency gf. The smoothing

curves can be applied to match the data points of
Nud=Re1=2

d � Grd=Re2
d and gf � Grd=Re2

d . The correlations
of Nud=Re1=2

d � Grd=Re2
d and gf � Grd=Re2

d can be obtained
using the least-square fitting method of experimental data
and are expressed as
gf ¼

0:115þ 10:084� GRd � 564:689� GR2
d

þ13830:830� GR3
d for S ¼ 0:005 m

0:117þ 7:940� GRd � 370:804� GR2
d

þ7468:036� GR3
d for S ¼ 0:01 m

0:123þ 4:067� GRd � 94:409� GR2
d

þ654:805� GR3
d for S ¼ 0:015 m

0:112þ 4:320� GRd � 105:092 � GR2
d

þ901:626� GR3
d for S !1

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð34Þ



Fig. 13. Variation of gf with Grd=Re2
d .
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and

Nud=Re1=2
d ¼

0:947þ 3:435� GRd for S ¼ 0:005 m

1:018þ 3:073� GRd for S ¼ 0:01 m

1:080þ 4:090� GRd for S ¼ 0:015 m

1:123þ 6:404� GRd for S !1

8>>><
>>>:

ð35Þ
where Grd is the Grashof number, Red is the Reynolds
number. The parameter GRd is defined as GRd ¼
Grd=Re2

d . The Nusselt number Nud is defined as

Nud ¼
�hdo

kair

ð36Þ

In Eq. (36), kair denotes the thermal conductivity of the air.
Table 3 shows variations of Nud=Re1=2

d , Grd=Re2
d and Red

with various S and Vair values. It can be found from Table
3 that the Red value ranges about from 1500 to 4600, and
Table 3
Variations of Grd=Re2

d , Nud=Re1=2
d and Red with various S and Vair values

Grd=Re2
d Nus=Re1=2

d Red

S = 0.005 m Vair = 1 m/s 0.03625 1.0765 1520.6016
Vair = 2 m/s 0.00937 0.9462 3035.2446
Vair = 3 m/s 0.00389 0.9868 4589.1051

S = 0.01 m Vair = 1 m/s 0.03748 1.1371 1515.0223
Vair = 2 m/s 0.00942 1.0251 3042.065
Vair = 3 m/s 0.00373 1.048 4619.1311

S = 0.015 m Vair = 1 m/s 0.03821 1.2362 1518.4509
Vair = 2 m/s 0.00921 1.1052 3029.1896
Vair = 3 m/s 0.00378 1.1058 4619.3828

S ?1 Vair = 1 m/s 0.03544 1.3531 1521.4636
Vair = 2 m/s 0.00953 1.1661 3019.2562
Vair = 3 m/s 0.00387 1.1624 4599.5914
the Grd=Re2
d value is less than 0.04 for various Vair and S

values. Thus the airflow in the present problem is laminar
for Vair 5 3 m/s and various S values. However, the tube
sheds eddies, which wash over the fin surface and provide
mixing of the flow. Lloyd and Sparrow [16] applied the
local similarity method to investigate the effect of natural
convection for combined natural and forced convection
from a hot isothermal vertical plate. Their numerical
results [2] showed that the effect of natural convection
can be negligible for ðGrd=Re2

dÞðL=d0Þ < 0:08. On the other
hand, the effect of natural convection will gradually
become significant for Grd=Re2

d > 0:08d0=L ¼ 0:0218 in
the present problem. This implies that the effect of natural
convection cannot be negligible for Vair 5 1 m/s and
S = 0.005 m. Furthermore, it can also be found from
Tables 1 and 2 that the measured fin temperatures on the
top fin region, T mea

2 and T mea
3 , are higher than those on

the bottom fin region, T mea
7 and T mea

8 . This result displays
that the effect of natural convection in the present problem
can need to be taken into consideration for Vair = 1 m/s
and S = 0.005 m especially on the downstream fin region,
and the effect of natural convection decreases with increas-
ing the Vair value.

6. Conclusions

The present study proposes a numerical inverse scheme
involving the finite difference method in conjunction with
the least-squares method and experimental fin temperatures
at eight measurement locations to estimate the heat transfer
coefficients on eight sub-fin regions, average heat transfer
coefficient on the whole square fin �h and fin efficiency gf

for various To, T1, Vair and S values. The estimated results
show that there is a considerable temperature drop between
the tube wall and the edge of the square fin especially on the
downstream region. The fin temperature distributions
depart from the ideal isothermal situation and the fin
temperature decreases more rapidly away from the circular
center with increasing the fin spacing and air speed. The
average heat transfer coefficients are very low on the down-
stream fin region behind the circular tube. The ratio of the
average heat transfer coefficient on the front fin region to
that on the wake fin region can be up to 10 times under
the given conditions of Vair, To and T1. The �h value
increases with increasing the S and Vair values. However,
the gf value decreases with increasing the Vair and S values.
The present estimates also show that the �h and gf values
respectively approach their corresponding asymptotical
values obtained from a single fin as S ?1. On the other
hand, the present estimated values of �h can be obtained over
a reasonably wide range of fin spacings.
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